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Population 111 stars

* First generation of stars to form in the Universe,
* Thought to have formed between a redshift of z ~ 20 — 30,
* Necessarily formed from metal-free environment.

Image credit: Abel, Bryan, and Norman (2001)



Population 111 stars

* Thought to have formed with higher masses
than stars forming from metal-enriched gas,

* Current typical mass range from
simulations ~ 10 - 100 M,

« Some simulations suggest formation of
low-mass (~1M,) stars Is possible (e.g.
Clark et al. 2011, Stacy & Bromm 2014,
StaCy et a.l 2016) Greif et al. (2008)




Population 111 stars

* We are yet to detect a metal-free star despite dedicated surveys spanning
~ 4 decades (Bond 1980 — Da Costa 2019),

* Can search for surviving chemical signature 1n potential Population III
relics.

Image credit: X-ray: NASA/CXC/MIT/L.Lopez et al.; Image credit; Naomi McClure-Griffiths et al.,
Infrared: Palomar; Radio: NSF/NRAO/VLA CSIRO's ASKAP telescope

Image credit: ESA/NASA



Damped Lyman Alpha systems (DLAS)
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Damped Lyman Alpha systems (DLAS)

* Clouds of mostly neutral hydrogen found along the line-of-sight towards unrelated background
quasars,

« Easy to identify in spectra from their strong damping wings,

* Characterised by a H I column density N(H I) > 10%°3cm-2.,
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Damped Lyman Alpha systems (DLAS)
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Carbon Isotope Ratio

* Simulations of stellar evolution suggest
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* There are two channels to produce low

2C/13C ratios in non-rotating stars:
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— Low-mass Population III stars
— Intermediate-mass Population II stars



Population 111 Yields
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Population 111 Yields

* Long-lived, low-mass Population 11 stars
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followed by He burning (Kobayashi 2011),
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e Campbell & Lattanzio (2008) simulations
suggest low-mass Population Il stars
produce ?C/13C < 6.



Population 11 Yields
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Population 11 Yields

* Population II AGB stars enrich environment
through mass loss,

* Convective envelope during Hot Bottom
Burning transports “C to proton-rich areas
leading to 13C production (Iben 1975;
Prantzos et al. 1996; Kobayashi et al. 2011),

» Karakas (2010) suggests Population II AGB
stars 1n the mass range 4 - 6 M5 produce 4 <
RC/13C <12.
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Both Yields
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Both Yields

* Short-lived, massive stars enrich
environment through core-collapse
supernovae,

» Surface mixing events not seen above
10M, (Karakas & Lattanzio 2014). 13C
IS only produced through secondary
processes regardless of metallicity,

* Heger & Woosley (2010) simulations
suggest 2C/13C > 1000.
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Carbon Isotope Ratio

« Measuring the 2C/13C ratio in a near- B —
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The struggle...




C nal334

The C 11 A1334 isotope lines are separated by 2.99 km s-!
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C nal1334

The presence of 1°C is seen as an asymmetry in C 11 L1334 line
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C nal1334

The presence of 13C is seen as an asymmetry in C 1 A1334 line
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C nal1334
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The presence of 13C is seen as an asymmetry in C 11 A1334 line

If the line centre of 12C can be determined

from other absorption lines then we can

detect the asymmetry.

This requires an accurate wavelength
solution.
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A measurement
requires:




1 ° E SPRE S S O (The Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations)




1 . ES P R ESSO (The Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations)

« Ultra-stable spectrograph,
» Unprecedented wavelength accuracy,

* Relative velocity accuracy better than
5m s, wavelength accuracy of ~104A
at 40004,

e Resolution in 4UT mode 1s 70,000.

Image Credit: ESO



2. A Promising DLA

* Found at z,, .~ 2.340 along the line-of-sight towards quasar J0035-0918

» Large neutral hydrogen column density log,, N(HI)/cm= = 20.43 + 0.04
* [Fe/H] =-2.94+0.06 where [X/Y]=log,((Nx/Ny) -1og;((Nx/Ny)q
* Total Doppler parameter ~ 3.5 km s-!

Cooke et al. (2011)
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The Data
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Best Fit Profile

Welsh et al. 2020
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Best Fit Profile

log,,*?C/*°C = 1.15 Welsh et al. 2020
4 T
= 1.0 g - - 1 We performed a suite of
E 1 Monte Carlo simulations to
TEO'S - ] infer the '2C/!°C isotope ratio
zg 00 S C 11 A1334 § distribution, given the data.
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A Lack of 13C

Welsh et al. 2020
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Overall Result

« log,(12C/13C) > 0.37 (20)
+ 12C/13C > 2.3 (20)

* \We can rule out the presence of large
amounts of 13C in this DLA,

* However we cannot empirically rule out
enrichment from low-mass Population 111
stars yet - more data are forthcoming!!
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Stochastic Enrichment Model
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Stochastic Enrichment Model




Stochastic Enrichment Model
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Stochastic Enrichment Model

Mmax
N, = j kM~%dM
M

min

N, — number of stars which have contributed to a DLAS enrichment

M., — minimum mass of enriching stars

M

. — maximum mass of enriching stars

o — power law mass distribution (Salpeter = 2.35)

E

exp — Lhe energy of supernova explosion at infinity



Stochastic Enrichment Model

« Metal-free stars form either individually or in small multiples, z;;

« Underlying IMF is stochastically sampled
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Population 111 vs Population 11 [C/O}
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Likelihood Analysis Na= | e
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Likelihood Analysis e
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Enrichment Timescale

Welsh et al. 2020
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Enrichment Timescale

Welsh et al. 2020

Redshift
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Physical Properties of DLA M, = J, " sonman

min

« Know the mass distribution of
massive stars from enrichment
model,

« Assume this relationship holds for
lower mass stars (> 1 M) and
adopt a log-normal IMF Below 1
M (Chabrier 2003),

e Calculate the total stellar mass

Population II expected within this DLAasa
2 | —— Population III function of the minimum mass with
T — 160 — which stars can form.

M min [MQ]




Physical Properties of DLA

Know total mass of metals in this
system from enrichment model,

Assume 100% retention of these 0.04
metals, s

—— Population II
—— Population IIT 71

PDF

This puts an upper limit on the .
gas mass, 0.02 F

Calculate the amount of pristine
gas necessary to produce
observed [O/H].

0.00 ——




Comparison with DL A Population

Welsh et al. 2019

. BroadIY_consistent with that found for typical metal-
poor DLA

« What can these properties tell us about the descendants
of metal-poor DLAS?

» Comparable stellar content to that of the faint ] ...
Milky Way satellite pgrpulatlon (Martin et al. 2008; 107 107 107 10°
McConnachie 2012). These typically span a mass
range of ~ (10°—"10°) M,

» Ultra-faint dwarf galaxies still expected to contain
gas at redshift ~3 (Wheeler et al. 2018).




Conclusions

» Carbon Isotope ratio is an informative probe of early stellar
populations,

* \We have recovered the first bound on this ratio in a near-pristine
system using ESPRESSO and can confidently rule out the strong
presence of 13C,

* To better investigate enrichment of the DLA towards J0035-0918
we need higher S/N data (forthcoming),

* Current enrichment model suggests that this DLA may have
experienced a hiatus in star formation post-reionisation.






Metallicity Evolution of 12C/13C
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Evolution with Redshift?

Welsh et al 2020
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Enrichment of DLASs vs Population 11 stars

 Enrichment model is most powerful when looking at the

(Welsh et al. in prep.)
distribution of abundances across a sample of objects,

* N, <72 (20) for metal-poor DLAs (Welsh et al. 2019)

* N,< 20 (20) for metal-poor halo stars (Welsh et al. in
prep)

?&\4/

 Caution: There are signs of tension between the observed
stellar abundances and the simulated yields. The
community needs a new set of (empirical/theoretical)
yields with uncertainties.

« Potential to estimate Population 11 multiplicity and the
number of minihalos that enrich the first surviving
structures?
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Yields

solar abundance
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